Title: Three-dimensional mesh Generation for device and process simulation
Language: input.forms.value-pairs.iso-languages.en
Authors: Cervenka, Johann 
Qualification level: Doctoral
Advisor: Grasser, Tibor
Assisting Advisor: Herbert, Haas 
Issue Date: 2004
Cervenka, J. (2004). Three-dimensional mesh Generation for device and process simulation [Dissertation]. reposiTUm. https://doi.org/10.34726/hss.2004.1458
Number of Pages: 132
Qualification level: Doctoral
Due to the progressive miniaturization of integrated circuits the exact and fast simulation of physical processes becomes more important. Parasitic effects begin to influence the device characteristics and existing models must be extended. Since these effects are not describable in two dimensions, the models must be extended to three dimensions and the simulation tools have to be adapted to three-dimensional requirements. Additionally, the grid generators must be extended for three dimensions. Since the necessary amount of data and computing time that is needed for the simulation increases enormously, it is inevitable to adapt the simulation meshes to the given requirements in order to obtain accurate simulation results even with limited resources. In this work the issue of three-dimensional grid generation for specific simulation problems in microelectronics is outlined. An adapted Delaunay grid generation approach for the electrical simulation of semiconductor devices has been developed. Since particularly a very high resolution of the mesh is necessary, global grid refinement methods are impracticable due to high resource consumption. With the developed method, the grid points are placed along computed equipotential surfaces. Since the positive characteristics of ortho grids are preserved, the grid lines near the surface match the contours of the geometry edges and no restriction on planar structures exists. Along these equipotential faces a high point-density can be selected within desired regions. A further advantage of this method is that the point-density can be tuned in relation to the direction, along three almost orthogonal axial directions, which results in controllable anisotropy.
Keywords: Gittererzeugung; Dimension 3; Mikroelektronik; Simulation
URI: https://doi.org/10.34726/hss.2004.1458
DOI: 10.34726/hss.2004.1458
Library ID: AC04379474
Organisation: E360 - Institut für Mikroelektronik 
Publication Type: Thesis
Appears in Collections:Thesis

Files in this item:

Items in reposiTUm are protected by copyright, with all rights reserved, unless otherwise indicated.

Page view(s)

checked on Jun 28, 2022


checked on Jun 28, 2022

Google ScholarTM