Wimmer, M., Kovacic, I., Ferschin, P., Rist, F., Hensel, M., Schinegger, K., Rutzinger, S., Kaufmann, H., Kilian, M., Müller, C., Izmestiev, I., Nawratil, G., Füssl, J., Stavric, M., Hahn, D., & Suter, G. (2022). Advanced Computational Design – digitale Methoden für die frühe Entwurfsphase. Bautechnik, 99(10), 720–730. https://doi.org/10.1002/bate.202200057
E104-03 - Forschungsbereich Differentialgeometrie und geometrische Strukturen E193-02 - Forschungsbereich Computer Graphics E259-01 - Forschungsbereich Digitale Architektur und Raumplanung E193-03 - Forschungsbereich Virtual and Augmented Reality E104-04 - Forschungsbereich Angewandte Geometrie E210-01 - Forschungsbereich Integrale Planung und Industriebau E202-02 - Forschungsbereich Struktursimulation und Ingenieurholzbau
-
Journal:
Bautechnik
-
ISSN:
0932-8351
-
Date (published):
26-Aug-2022
-
Number of Pages:
11
-
Publisher:
ERNST & SOHN
-
Peer reviewed:
Yes
-
Keywords:
Building materials; CAD – IT/Automatical/CAD; design interaction; design methodology; Digital design/Optimization; digitalization; form finding; simulation
en
Abstract:
Advanced Computational Design. The SFB Advanced Computational Design addresses the research question of how to advance design tools and processes through multi- and interdisciplinary basic research. We will develop advanced computational design tools in order to improve design quality and efficiency of processes in architecture and construction. The proposed research is structured in three areas: design methodology (A1), visual and haptic design interaction (A2) and form finding (A3). A1 focuses on the conceptual basis for new digital methods of design based on machine learning. A1 also acts as a platform for integrating and evaluating the computational tools and methods developed in A2 and A3. A2 investigates real-time global-illumination and optimization algorithms for lighting design, as well as a new method for large-scale haptic interactions in virtual reality. In A3, form finding will be explored regarding geometric, mechanical and material constraints, in particular: paneling of complex shapes by patches of certain surface classes while optimizing the number of molds; algorithms for finding new transformable quad-surfaces; mechanical models for an efficient simulation of bio-composite material systems. Furthermore, new ways of form finding will be explored through physical experiments, which will allow for reconsidering model assumptions and constraints, validating the developed algorithmic approaches, and finding new ones.
en
Project title:
Advanced Computational Design: F77 (Fonds zur Förderung der wissenschaftlichen Forschung (FWF))