Title: The joint distribution of Q-additive functions on polynomials over finite fields
Language: English
Authors: Gutenbrunner, Georg
Qualification level: Doctoral
Advisor: Drmota, Michael
Assisting Advisor: Grabner, Peter
Issue Date: 2004
Number of Pages: 71
Qualification level: Doctoral
Abstract: 
Let $K$ be a finite field and $Q\in K[T]$ a polynomial of positive degree. A function $f$ on $K[T]$ is called (completely) $Q$-additive if $f(A+BQ)=f(A)+f(B)$, where $A,B\in K[T]$ and $\deg(A)<\deg(Q)$.
We prove that the values $(f_1(A),\ldots,f_d(A))$ are asymptotically equidistributed on the (finite) image set $\{(f_1(A),\ldots,f_d(A)) :
A\in K[T]\}$ if $Q_j$ are pairwise coprime and $f_j : K[T] o K[T]$ are $Q_j$-additive. Furthermore, it is shown that $(g_1(A),g_2(A))$ are asymptotically independent and Gaussian if $g_1,g_2: K[T] o \R$ are $Q_1$- resp. $Q_2$-additive.
Keywords: Additive Funktion; Verallgemeinerung; Polynomring; Galois-Feld; Wahrscheinlichkeitsverteilung
URI: https://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-9181
http://hdl.handle.net/20.500.12708/14278
Library ID: AC04223187
Organisation: E104 - Institut für Diskrete Mathematik und Geometrie 
Publication Type: Thesis
Hochschulschrift
Appears in Collections:Thesis

Files in this item:


Page view(s)

29
checked on Jul 11, 2021

Download(s)

101
checked on Jul 11, 2021

Google ScholarTM

Check


Items in reposiTUm are protected by copyright, with all rights reserved, unless otherwise indicated.