Title: Multimethod identification of “universal” patterns in biological, metallic, and ceramic materials: Chemical composition, elasticity, and hardness
Other Titles: Kombination vielfältiger experimenteller Methoden zwecks Identifikation „universellen” Mustern in biologischen,metallischen und keramischen Materialien: Chemische Zusammensetzung, Elastizität und Härte
Language: English
Authors: Zelaya Lainez, Luis Haroldo  
Qualification level: Doctoral
Keywords: biologische; metallische; keramischen Materialien; Chemische Zusammensetzung; Elastizität
universal patterns; biological; metallic; ceramic materials; Chemical composition; elasticity; hardness
Advisor: Hellmich, Christian 
Issue Date: 2021
Number of Pages: 169
Qualification level: Doctoral
Abstract: 
Das Studium von Struktur-Eigenschafts-Beziehungen, einem allgegenwärtigen Thema in den modernen Materialwissenschaften, bietet eine stetig wachsende Bühne für interdisziplinäre Forschungsanstrengungen an den Schnittstellen von Ingenieurwissenschaft, Physik, Chemie und Biologie. Die Herausforderung dabei liegt auf der Identifikation der richtigen Ebenen innerhalb der hierarchischen Organisation vieler biologischer und menschengemachter Materialien, welche deren physikalische und vor allem mechanische Eigenschaften steuern.Dies erfordert eine gut ausbalancierte Mischung experimenteller Methoden, basierend auf einem klaren theoretischen Verständnis; und die vorliegende Dissertation erweitert ganz wesent¬lich den Stand der Technik betreffend der Nutzung solcher Methoden, nämlich folgender: Nanoindentierung, Ultraschallversuche, Rastersondenmikroskopie, Rasterelektronenmikroskopie, Lichtmikroskopie, Computertomographie, Quecksilber-Intrusionsporosimetrie, Massenspektrometrie, Dehydratations- und Demineralisierungsversuche, sowie Wiegeversuche in Verbindung mit dem archimedischen Prinzip.Dies passiert auf zwei, sich gegenseitig ergänzende Arten: Einerseits, und zwar in den Kapiteln 3 bis 6, werden wohlbekannte Struktur-Eigenschafts-Beziehungen in bisher unerreichter Vollständigkeit bzw. aus ungewöhnlichen Perspektiven untersucht. Das betrifft im Wesentlichen Strukturelemente, welche typischerweise nicht Teil einschlägiger Studien sind, nämlich Mikrorisse, welche die elastischen Eigenschaften in scheinbar perfekt plastischen Werkstoffen wie Schienenstahl modulieren; oder die mehrskalige Natur von Porenräumen in gebranntem Ton unterschiedlicher Provenienz. Im selben Sinne ist es wohlbekannt, dass das Knochenmineral (eine unreine Form von Hydroxyapatit) und Typ1-Kollagen die Härte- und Elastiztätseigenschaften der extrazellulären Knochenmatrix steuern, während die Dosierung dieser elementaren Bausteine im selben Organ unterschiedlicher Wirbeltierarten kaum einer systematischen Untersuchung unterzogen wurde. Dazu wird in der vorliegenden Dissertation ein durchaus überraschendes Ergebnis vorgelegt: Variationen im Mineral- und Kollagengehalt von Oberschenkelknochen verschiedener Wirbeltierarten sind (wesentlich) kleiner als solche zwischen verschiedenen Organen desselben Organismus (z.B. solche zwischen Oberschenkel- und Wirbelknochen). Solche praktisch invarianten Zusammensetzungsverhältnisse sind besondern stabil innerhalb genetisch näher verwandter Wirbeltiere, wie der Säugetiere.Andererseits wird im „Hauptkapitel“, dem Kapitel 2 der Dissertation, ein fundamentaler Rahmen für Struktur-Eigenschaftsbeziehungen einer im Vergleich zu Knochen, gebrantem Ton oder Stahl bislang nahezu unerforschten Materialklasse vorgestellt: Exoskelett-Material, aus welchem die Kiefer verschiedener Borstenwurmarten bestehen. Dazu wurden, zum allerersten Mal überhaupt, die chemischen, elastischen und Härte-Eigenschaften des Kiefermaterials von Platynereis dumerilii untersucht. Die zugehörigen Ergebnisse zeigen ein überraschendes Bild, wo - ganz im Gegensatz zur Situation bei Knochen, Stahl oder gebranntem Ton - Merkmale biologischer und metallischer Materialien miteinander verbunden werden. Namentlich fördert eine Miniatur-Version von Nanoindentierungsversuchen ein Härte-Skalierungsgesetz zu Tage, wie es bisher nur von kristallinen Metallen bekannt war, sogar mit ähnlichen Elastizitäts- und Festigkeitseigenschaften. Allerdings werden die die Polychaeta-Kiefer aufbauenden, mit Ionen angereicherten Strukturproteine, im Gegensatz zu Metallen, energieeffizient bei Raumtemperatur im Rahmen eines äußerst präzisen biologischen 3D-Druckverfahrens hergestellt. Letzeres könnte neue technologische Entwicklungen inspirieren. Diese Ergebnisse werden von einer Einleitung betreffend hierarchische strukturierte Materialien (Kapitel 1) und einen Ausblick auf weiterführende Forschungs- und Entwicklungsschritte eingerahmt.

The study of structure-property relations is a universal theme in contemporary materials science, providing an ever-growing stage for interdisciplinary research endeavors of engineers, physicists, chemist, and biologists. The challenge, however, lies in identifying the right lev-els throughout the pronounced hierarchical organizations of many biological and man-made materials, which are governing their various physical, and particular so, mechanical properties.This requires a well-balanced blend of experimental methods set in a clear theoretical under-standing; and the current thesis significantly extends the state-of-the-art exploitation of such methods, namely nanoindentation, ultrasonic testing, scanning probe microscopy, scanning electron microscopy, light microscopy, computed tomography, Mercury intrusion porosimetry, mass spectroscopy, dehydration and demineralization testing, and weighing in combination with Archimedes’ principle.It does so in two complementing ways: On the one hand (see Chapters 3 to 5), well-accepted structure-function relations are investigated up to a new level of completeness and through the addition of unusual perspectives. This essentially concerns structural entities which have not yet been at the focus of respective studies, such as micro cracks which significantly modulate elastic properties in seemingly perfectly plastic materials such as steel for railway engineering, or the multi- rather than uniscale nature of the porosities found in a variety of different fired clay bricks. In the same sense, while bone mineral (an impure form of hydroxyapatite) and type I collagen have been known for some time to drive the extracellular matrix’s elastic and hardness/strength properties, the very composition patterns which hydroxyapatite and collagen build up across tissues of the same organ, but different species, has hardly been investigated systematically. The somewhat surprising result obtained in the present thesis is that variations in mineral and collagen content of femoral tissues of different species are (much) less pronounced than such variations between different organs of the same organism (say femoral and vertebral tissues). Such virtual invariances become particularly stable in genetically more relative vertebrates, such as mammals.On the other hand, the thesis provides, in its “main” chapter, labeled with 2, a basic framework for structure-property relations in a material class, which as compared to bone, steel, or brick, has remained almost untouched: namely jaw tissues harvested from different bristle worm (Polychaeta) species. For the first time ever, elasticity, hardness, and chemical characteristics of the extraskeleton of Platynereis dumerilii have been tested. The again surprising results show a picture which is distinctively different from that known with bone, fired clay, or steel; namely one where, in an unexpected fashion, features of very distinct metallic and biological materials are combined. In more detail, a new level of nanoindentation miniaturization provided access to a hardness scaling law similar to those known for crystalline metals, with even similar strength and elasticity. However, in contrast to metals, the ion-spiked structure proteins making up Polychaeta jaws are produced at room temperature, thanks to an unsurpassed, super-precise 3D printing-type device in the form of particularly committed biological cells. The latter may inspire unprecedented technological progress in the 3D printing field.These results are framed by a general introduction to hierarchical structures in materials (in Chapter 1), and rich perspectives for future research and development (see Chapter 6).
URI: https://doi.org/10.34726/hss.2021.87661
http://hdl.handle.net/20.500.12708/16817
DOI: 10.34726/hss.2021.87661
Library ID: AC16138953
Organisation: E202 - Institut für Mechanik der Werkstoffe und Strukturen 
Publication Type: Thesis
Hochschulschrift
Appears in Collections:Thesis

Show full item record

Page view(s)

8
checked on Feb 22, 2021

Download(s)

4
checked on Feb 22, 2021

Google ScholarTM

Check


Items in reposiTUm are protected by copyright, with all rights reserved, unless otherwise indicated.