Motivated by a problem for mixed Monge–Ampere measures of convex func- `
tions, we address a special case of a conjecture of Schneider and show that for every
convex body K the support of the mixed area measure S(K[ j],B
n−1
L
[n− 1− j],·)
is given by the set of (K[ j],B
n−1
L
[n− 1− j])-extreme unit normal vectors, where
B
n−1
L
denotes the (n− 1)-dimensional Euclidean unit ball in a hyperplane L. As
a consequence, we see that the supports of these measures are nested. Our proof
introduces a Kubota-type formula for mixed area measures, which involves in tegration over j-dimensional linear subspaces that contain a fixed 1-dimensional
subspace. We transfer these results to the analytic setting, where we obtain cor responding statements for (conjugate) mixed Monge–Ampere measures of convex `
functions. Thereby, we establish a fundamental property for functional intrinsic
volumes. In addition, we study connections between mixed Monge–Ampere mea- `
sures of convex functions and mixed area measures and mixed volumes of convex
bodies.
en
Project title:
Hessische Ungleichungen und Erweiterungen auf Sobolev-Räumen: J 4490 (FWF - Österr. Wissenschaftsfonds) Integralgeometrie auf konvexen Funktionen: P 36210 (FWF - Österr. Wissenschaftsfonds) Bewertungen auf konvexen Funktionen: P 34446-N (FWF - Österr. Wissenschaftsfonds)