Oelerich, T., Hartl-Nesic, C., & Kugi, A. (2024). Model Predictive Trajectory Planning for Human-Robot Handovers. In Tagungsband der VDI Mechatroniktagung Dresden 2024 (pp. 65–70).
E376-02 - Forschungsbereich Komplexe Dynamische Systeme E056-10 - Fachbereich SecInt-Secure and Intelligent Human-Centric Digital Technologies
-
Published in:
Tagungsband der VDI Mechatroniktagung Dresden 2024
-
Date (published):
2024
-
Event name:
VDI Mechatroniktagung Dresden 2024
de
Event date:
14-Mar-2024 - 15-Mar-2024
-
Event place:
Germany
-
Number of Pages:
6
-
Keywords:
model predictive trajectory planning; human-robot handovers; MPC
en
Abstract:
This work develops a novel trajectory planner for human-robot handovers. The handover requirements can naturally be handled by a path-following-based model predictive controller, where the path progress serves as a progress measure of the handover. Moreover, the deviations from the path are used to follow human motion by adapting the path deviation bounds with a handover location prediction. A Gaussian process regression model, which is trained on known handover trajectories, is employed for this prediction. Experiments with a collaborative 7-DoF robotic manipulator show the effectiveness and versatility of the proposed approach.
en
Additional information:
Preprint zum Konferenzbeitrag auf arXiv Open Access veröffentlicht: https://doi.org/10.48550/arXiv.2404.07505
-
Research Areas:
Mathematical and Algorithmic Foundations: 50% Modeling and Simulation: 50%