Title: Aspects of thin film deposition on granulates by physical vapor deposition
Language: English
Authors: Eder, Andreas 
Schmid, Gerwin H. S. 
Mahr, Harald 
Eisenmenger-Sittner, Christoph
Category: Research Article
Forschungsartikel
Keywords: Plasma physics
Issue Date: 2016
Journal: The European physical journal D
Abstract: 
Thin film and coating technology has entered fields which may show significant deviations from classical coating applications where films are deposited on plane, sometimes large substrates. Often surfaces of small and irregularly shaped bodies have to be improved in respect to electrical, thermal or mechanical properties. Film deposition and characterization on such small substrates is not a trivial task. This specially holds for methods based on Physical Vapor Deposition (PVD) processes such as sputter deposition and its ion- and plasma assisted varieties. Due to their line of sight nature a key issue for homogenous films is efficient intermixing. If this problem is mastered, another task is the prediction and determination of the film thickness on single particles as well as on large scale ensembles thereof. In this work a mechanism capable of uniformly coating up to 1000 cm3 of granulate with particle sizes ranging from approx. 10 μm to 150 μm by magnetron sputtering is thoroughly described. A method for predicting the average film thickness on the particles is presented and tested for several differently shaped objects like microspheres, irregular grains of sinter powder or micro diamonds. For assessing the film thickness on single particles as well as on particle ensembles several complementary methods based on optics, X-ray analysis and gravimetry are employed. Their respective merits and limitations are discussed. Finally an outlook on adapting the described technology for surface modification by plasma based reactive and non-reactive processes is given.
DOI: 10.1140/epjd/e2016-70435-7
Library ID: AC11361204
URN: urn:nbn:at:at-ubtuw:3-2789
ISSN: 1434-6079
Organisation: E138 - Institut für Festkörperphysik 
Publication Type: Article
Artikel
Appears in Collections:Article

Files in this item:

Show full item record

Page view(s)

66
checked on Apr 19, 2021

Download(s)

194
checked on Apr 19, 2021

Google ScholarTM

Check


This item is licensed under a Creative Commons License Creative Commons