Title: Does Cascading Schmitt-Trigger Stages Improve the Metastable Behavior?
Language: English
Authors: Steininger, Andreas  
Najvirt, Robert 
Maier, Jürgen  
Issue Date: 2016
Steininger, A., Najvirt, R., & Maier, J. (2016). Does Cascading Schmitt-Trigger Stages Improve the Metastable Behavior? In 2016 Euromicro Conference on Digital System Design (DSD). IEEE. https://doi.org/10.1109/DSD.2016.56
Schmitt-Trigger stages are the method of choice for robust discretization of input voltages with excessive transition times or significant noise. However, they may suffer from metastability. Based on the experience that the cascading of flip-flop stages yields a dramatic improvement of their overall metastability hardness, in this paper we elaborate on the question whether the cascading of Schmitt-Trigger stages can obtain a similar gain.

We perform a theoretic analysis that is backed up by an existing metastability model for a single Schmitt-Trigger stage and elaborate some claims about the behavior of a Schmitt-Trigger cascade. These claims suggest that the occurrence of metastability is indeed reduced from the first stage to the second which suggests an improvement. On the downside, however, it becomes clear that metastability can still not be completely ruled out, and in some cases the behavior of the cascade may be less beneficial for a given application, e.g. by introducing seemingly acausal transitions. We validate our findings by extensive HSPICE simulations in which we directly cover our most important claims.
Keywords: Metastability; Schmitt-Trigger; SPICE
URI: https://resolver.obvsg.at/urn:nbn:at:at-ubtuw:3-10158
Library ID: AC15666405
ISBN: 9781509028177
Organisation: E191 - Institut für Computer Engineering 
Publication Type: Inproceedings
Appears in Collections:Conference Paper

Files in this item:

Page view(s)

checked on Jan 4, 2022


checked on Jan 4, 2022

Google ScholarTM


Items in reposiTUm are protected by copyright, with all rights reserved, unless otherwise indicated.