Let Sg,n be a surface of genus g>1 with n>0 punctures equipped with a complete hyperbolic cusp metric. Then it can be uniquely realized as the boundary metric of an ideal Fuchsian polyhedron. In the present paper we give a new variational proof of this result. We also give an alternative proof of the existence and uniqueness of a hyperbolic polyhedral metric with prescribed curvature in a given conformal class.