Puntscher, H. (2014). Synthesis and study of novel carbazole- and indolocarbazole-functionalized Dithienophosphole oxides as bipolar functional organic materials [Diploma Thesis, Technische Universität Wien]. reposiTUm. https://doi.org/10.34726/hss.2014.15948
Bipolare funktionelle organische Materialien gewinnen immer mehr an Bedeutung aufgrund ihrer Eigenschaft sowohl positive als auch negative Ladungsträger zu transportieren. Für die technische Anwendung dieser Materialien im Bereich der organischen Elektronik ist dies ausschlaggebend für die Effizienz und Stabilität der Bauteile, wie z.B. organischer Leuchtdioden (OLEDs). Im Zuge dieser Arbeit wurde das intensiv blau fluoreszierende Dithienophospholoxid (DTPOX) mit verschiedenen Triarylamin-Systemen funktionalisiert. Der Einfluss unterschiedlich planarer Triarylamin-Systeme, der Verknüpfungsart (para, meta, ortho) und der n-Bu-Substituenten am DTPOX-System auf elektrochemische und photophysikalische Eigenschaften der neuen Materialien wurde untersucht. Die Synthese der verschiedenen Triarylamin-Vorstufen wurde über Ullmann Kondensation und die Lithiierung der Bromo-Spezies realisiert, um dann das Phosphoratom einzuführen. Durch das Zusammenführen dieser Vorstufen mit den entsprechenden 3,3'-Dibromo-2,2'-bithiophenen (R an Position 5 u 5` =H oder =C4H9) konnten Phosphor(III)-Verbindungen erhalten werden, welche in situ mit einem H2O2-Überschuss oxidiert wurden. Die photophysikalischen Eigenschaften der Zielsubstanzen wurden durch ihre Absorptions- und Emissionsspektren charakterisiert. Die Absorptionsspektren zeigen klar rot-verschobene Absorptionsansätze für Substanzen mit R=C4H9 verglichen mit denen mit R=H. Auch die Emissionsmaxima der n-Bu-substituierten Verbindungen sind rot-verschoben. Das Triarylamin-System scheint hingegen keinen Einfluss auf diese Eigenschaften zu haben. Lediglich für Substanzen mit ortho-verknüpften Phenylcarbazol-Systemen zeigt sich eine zusätzliche Rotverschiebung. Intramolekulares pi-Stacking könnte dies verursachen. Elektrochemische Eigenschaften wurden mittels Cyclovoltammetrie (CV) untersucht, um HOMO und LUMO Werte der Substanzen zu ermitteln. Aufgrund der positiven Ergebnisse können diese Materialien in Test-Bauteilen verbaut und weiter untersucht werden.
de
Bipolar functional organic materials are increasingly gaining attention due to their good and balanced charge transport properties, which are crucial for the efficiency and stability of organic electronic devices such as Organic Light-Emitting Diodes (OLEDs). Within this work, the strongly blue fluorescent dithienophosphole oxide (DTPOX) building block was functionalized with various triarylamine systems. The influence of different triarylamine systems (more and less panarized), their linkage mode (para, meta, ortho) and n-Bu-substituents at the DTPOX-system on the electrochemical and photophysical properties of the novel materials was investigated. The synthesis of various triarylamine based precursor systems was realized by Ullmann condensation and lithiation of bromo-precursors in order to introduce the phosphorus center. By linking these precursors with the corresponding 3,3'-dibromo-2,2'-bithiophenes (R at positions 5 and 5' on the thiophene rings =H or =C4H9) trivalent phosphorus compounds were formed and oxidized in situ with excess H2O2. In order to characterize the photophysical properties absorption and emission spectra of the DTPOX compounds were recorded. The generally similar absorption spectra show distinctly red shifted onsets of absorption for compounds with R=C4H9 with respect to those with R=H. Analogously, red-shifted emission was observed for all n-Bu-substituted materials. In contrast, the triarylamine moiety does not influence the absorption onset or the emission characteristics with the exception of the species functionalized with the ortho-linked phenylcarbazole system, which is attributed to intramolecular pi-stacking. Furthermore, the electrochemical properties were investigated by cyclic voltammetry (CV). Both HOMO and LUMO levels indicate no significant injection barrier for charge carriers to adjacent layers in electro-optical devices. Based on these results the next step will be the incorporation of these materials in test-devices.