Ball’s complex plank theorem states that if v1,…,vn are unit vectors in Cd, and t1,…,tn are non-negative numbers satisfying ∑nk=1t2k=1, then there exists a unit vector v in Cd for which |⟨vk,v⟩|≥tk for every k. Here we present a streamlined version of Ball’s original proof.
en
Project title:
Affine isoperimetrische Ungleichungen: P31448-N35 (Fonds zur Förderung der wissenschaftlichen Forschung (FWF))