Title: Pt-B system re-visited: Pt2B, a new structure type of binary borides. Ternary WAl12-type derivative borides
Language: English
Authors: Sologub, Oksana 
Salamakha, Leonid
Rogl, Peter 
Stöger, Berthold 
Bauer, Ernst 
Bernardi, Johannes 
Giester, Gerald 
Waas, Monika 
Svagera, Robert 
Category: Research Article
Issue Date: 2015
Journal: Inorganic Chemistry
Based on a detailed study applying X-ray single crystal and powder diffraction, DSC and SEM analysis it was possible to resolve existing uncertainties in the Pt-rich section (65 at.% Pt) of the binary Pt-B phase diagram above 600C. The formation of a unique structure has been observed for Pt2B (X-ray single crystal data: SG C2/m, a=1.62717(11) nm, b=0.32788(2) nm, c=0.44200(3) nm, =104.401(4)º, RF2=0.030). Within the homogeneity range of "Pt3B", X-ray powder diffraction phase analysis prompted two structure modifications as a function of temperature. The crystal structure of "hT-Pt3B" complies with the hitherto reported structure of anti-MoS2 (SG P63/mmc, a=0.279377(2) nm, c=1.04895(1) nm; RF=0.075, RI=0.090). The structure of the new "ℓT-Pt3B" is still unknown. The formation of previously reported Pt~4B has not been confirmed from binary samples. Exploration of the Pt-rich section of Pt-Cu-B system at 600C revealed a new ternary compound Pt12CuB6-y (X-ray single crystal data: SG Im , a=0.75790(2), y=3; RF2=0.0129) which exhibits the filled WAl12-type structure accommodating boron in the interstitial trigonal-prismatic site 12e. The isotypic platinum-aluminium-boride was synthesized and studied. Solubility of copper in binary platinum borides has been found to attain about 7 at.% Cu for Pt2B but to be insignificant for "ℓT-Pt3B". The architecture of the new Pt2B structure combines puckered layers of boron filled and empty [Pt6] octahedra (anti-CaCl2-type fragment) alternating along the x axis with a doubled layer of boron-semifilled [Pt6] trigonal prisms interbedded with a layer of empty tetrahedra and tetragonal pyramids (B-deficient α-TℓI fragment). Assuming boron vacancies ordering (SG R3), the Pt12CuB6-y structure exhibits the serpentine-like columns of edge-connected boron filled [Pt6] trigonal prisms running infinitively along z axis and embedding the icosahedrally coordinated Cu atom. Pt2B, (Pt1-yCuy)2B (y=0.045) and Pt12CuB6-y (y=3) behave metallic, as revealed from temperature dependent electrical resistivity measurements.
DOI: 10.1021/acs.inorgchem.5b01998
Library ID: AC11364799
URN: urn:nbn:at:at-ubtuw:3-3234
ISSN: 1520-510X
Organisation: E138 - Institut für Festkörperphysik 
Publication Type: Article
Appears in Collections:Article

Files in this item:

Show full item record

Page view(s)

checked on Apr 16, 2021


checked on Apr 16, 2021

Google ScholarTM


Items in reposiTUm are protected by copyright, with all rights reserved, unless otherwise indicated.