Title: Ultimate limits of reinforced concrete hinges
Authors: Schlappal, Thomas 
Kalliauer, Johannes  
Vill, Markus 
Mang, Herbert 
Eberhardsteiner, Josef  
Pichler, Bernhard  
Category: Original Research Article
Issue Date: 1-Dec-2020
Schlappal, T., Kalliauer, J., Vill, M., Mang, H., Eberhardsteiner, J., & Pichler, B. (2020). Ultimate limits of reinforced concrete hinges. Engineering Structures, 224, 1–16. https://doi.org/10.34726/201
Journal: Engineering Structures 
ISSN: 0141-0296
This work is a further development of its predecessor, the topic of which was verification of serviceability limit states of reinforced concrete hinges. Herein, the same conceptual approach is used to derive analytical formulae, supporting verification of ultimate limit states. These formulae limit tolerable relative rotations as a function of the compressie normal force transmitted across the neck. The mechanical model is based on the Bernoulli-Euler hypothesis and on linear-elastic and ideally-plastic stress-strain relationships for both concrete in compression and steel in tension. The usefulness of the derived formulae and the corresponding dimensionless design dia-grams is assessed by means of experimental data from structural testing of reinforced concrete hinges, taken from the literature. This way, it is shown that the proposed mechanical model is suitable for describing ultimate limit states. Corresponding design recommendations are elaborated and exemplarily applied to verification of ultimate limit states of the reinforced concrete hinges of a recently built integral bridge. Since the reinforcement is explicitly accounted for, the tolerable relative rotations are larger than those according to existing guidelines. It is included that bending-induced tensile macrocracking beyond one half of the smallest cross-section of the neck is acceptable, because the tensile forces carried by the reinforcement ensure the required position stability of the hinges.
Keywords: ultimate limit states (ULS); Integral bridges; Design Recommendations
DOI: 10.1016/j.engstruct.2020.110889
DOI: 10.34726/201
Organisation: E202 - Institut für Mechanik der Werkstoffe und Strukturen 
License: CC BY-NC-ND 4.0 CC BY-NC-ND 4.0
Publication Type: Article
Appears in Collections:Article

Files in this item:

Ultimate limits of reinforced concrete hinges.pdf
Adobe PDF
(4.62 MB)
Embargo. Accessible from 01.12.2022

Page view(s)

checked on Oct 12, 2021


checked on Oct 12, 2021

Google ScholarTM


This item is licensed under a Creative Commons License Creative Commons