E192-01 - Forschungsbereich Algorithms and Complexity
-
Journal:
Artificial Intelligence
-
ISSN:
0004-3702
-
Date (published):
Dec-2023
-
Number of Pages:
18
-
Publisher:
Elsevier
-
Peer reviewed:
Yes
-
Keywords:
Constraint programming; Hypertree width; MaxSAT; Optimization; SAT; SAT encoding; SMT
en
Abstract:
Hypertree width is a prominent hypergraph invariant with many algorithmic applications in constraint satisfaction and databases. We propose two novel characterisations for hypertree width in terms of linear orderings. We utilize these characterisations to obtain SAT, MaxSAT, and SMT encodings for computing the hypertree width exactly. We evaluate the encodings on an extensive set of benchmark instances and compare them to state-of-the-art exact methods for computing optimal hypertree width. Our results show that our approach outperforms these state-of-the-art algorithms.
en
Project title:
SAT-Basierende lokale Verbesserungsmethoden: P32441-N35 (FWF - Österr. Wissenschaftsfonds) Strukturerkennung mit SAT: P36420-N (FWF - Österr. Wissenschaftsfonds) Revealing and Utilizing the Hidden Structure for Solving Hard Problems in AI: ICT19-065 (WWTF Wiener Wissenschafts-, Forschu und Technologiefonds)