Title: Numerische WKB-Methode für die stationäre Schrödingergleichung : Spektralmethode zur Phasenberechnung
Language: Deutsch
Authors: Ujvari, Bernhard 
Qualification level: Diploma
Advisor: Arnold, Anton  
Issue Date: 2015
Number of Pages: 97
Qualification level: Diploma
Abstract: 
Die Arbeit behandelt ein numerisches WKB-Verfahren zur Näherung der hoch oszillatorischen Lösung einer stationären Schrödingergleichung. In der WKB-Näherung tritt ein Integral auf, das mit Hilfe von Spektralmethoden numerisch berechnet werden soll. Dabei wird untersucht, wie sich die Verwendung von Spektralmethoden, in der Arbeit die Clenshaw-Curtis Quadratur und eine baryzentrisch interpolierte Stammfunktion nach Entwicklung in eine Chebyshevreihe, auf den Gesamtfehler des Verfahrens im Vergleich zu gängigen Quadraturverfahren (wie Simpsonquadratur oder Trapezregel) auswirkt. Dazu wird in Kapitel 3 die Fehlerabschätzung des WKB-Verfahrens um eine Abschätzung des Fehlers erweitert, der bei der numerischen Berechnung des auftretenden Phasenintegrals entsteht. In Kapitel 4 und 5 wird das WKB-Verfahren und die Integration mit Spektralmethoden anhand von zwei numerischen Beispielen behandelt.

The work discusses a numerical WKB-method use for the approximation of a high oscillating solution of a stationary Schr-odinger equation. An integral occurs WKB approximation that should be computed by means of spectral methods. Thereby, it will be investigated how the use of spectral methods, in this work the Clenshaw-Curtis quadrature and barycentric interpolated antiderivative after expansion in a chebyshev series, effects the global error of the WKB-Method in comparison with other quadrature methods (such as the simpson quadrature or trapezoidal rule). Therefore, in chapter 3, the error estimation of the WKB-method will be extended by one estimation of the error, that arises during the numerical calculation of the occurring phase integral. Furthermore, in the chapters 4 and 5, the WKB-method and the integration, with, former mentioned, spectral methods will be discussed based on two numerical examples.
Keywords: hochoszillatorische Gleichungen; Spektralmethoden
highly oscillatory equations; spectral methods
URI: https://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-87878
http://hdl.handle.net/20.500.12708/4957
Library ID: AC12696004
Organisation: E101 - Institut für Analysis und Scientific Computing 
Publication Type: Thesis
Hochschulschrift
Appears in Collections:Thesis

Files in this item:


Page view(s)

20
checked on Oct 19, 2021

Download(s)

63
checked on Oct 19, 2021

Google ScholarTM

Check


Items in reposiTUm are protected by copyright, with all rights reserved, unless otherwise indicated.